Name: José-Jaime Martínez-Magaña Email: jose.martinez-magana@yale.edu PI Name: Janitza Montalvo-Ortiz PI Email: janitza.montalvo-ortiz@yale.edu

Local Ancestry-Aware Meta-Analysis of Genome-Wide Association Studies for Substance Use Traits in Latin American Populations

José Jaime Martínez-Magaña¹, Elizabeth Atkinson², Paola Giusti-Rodríguez³, Marcos Leite Santoro⁴, Sylvia Wassertheil-Smoller⁵, Martha Daviglus⁶, Krista M Perreira⁷, Humberto Nicolini⁸, Alexandre C Pereira⁹, Sintia Iole Belangero¹⁰, Mariana Moysés-Oliveira¹¹, Katherine L Tucker¹², Jose Ordovas¹³, Jorge Ameth Villatoro-Velazquez¹⁴, Maria Elena Medina-Mora¹⁵, Luis Augusto Rohde¹⁶, Rodrigo Affonseca Bressan¹⁷, Euripedes Constantino Miguel¹⁸, Pedro Mario Pan¹⁹, Giovanni Abrahao Salum²⁰, Priscila F. Tempaku¹¹, Monica L. Andersen¹¹, Sergio Tufik¹¹, Latin American Genomics Consortium, Janitza L. Montalvo-Ortiz²

¹Department of Psychiatry, Yale School of Medicine, New Haven, CT
 ²Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
 ³Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
 ⁴Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
 ⁵Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY
 ⁶Institute for Minority Health Research, College of Medicine University of Illinois at Chicago, IL
 ⁷Department of Social Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
 ⁸Laboratorio de Enfermedades Psiquiátricas, Neurodegenerativas y Adicciones, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Ciudad de Mexico, México
 ⁹Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), University of São Paulo Medical School, São Paulo, Brazil

¹⁰Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), Brazil

¹¹Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil.
 ¹²Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell

¹³Nutrition and Genetics, Gerald J. and Dorothy R. Friedman School of Nutrition Sciences and Policy, Tufts University

 ¹⁴Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Ciudad de México, México
 ¹⁵Faculty of Psychology, Universidad Nacional Autónoma de México, Circuito Ciudad Universitaria 04510, Coyoacan, Mexico City, Mexico

¹⁶National Institute of Developmental Psychiatry, CNPq, São Paulo, Brazil
 ¹⁷Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Department of Psychiatry,
 Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Major Maragliano, 241,
 São Paulo, SP, Brazil

¹⁸Institute of Psychiatry (IPQ), Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos, 785, Sao Paulo, SP CEP 05403-903, Brazil

¹⁹Laboratory of Integrative Neuroscience (LINC)Universidade Federal de São Paulo, Brazil
 ²⁰National Institute of Developmental Psychiatry for Children and Adolescents (INPD), São Paulo, Brazil

Genome-wide association studies (GWAS) have made substantial progress in understanding the genetic liability of alcohol consumption. However, efforts modeling ancestry-specific effects in GWAS studies in admixed populations, like the Latin American (LA) population, has been minimal. LAs are highly admixed with a mosaic of different proportions of European, Amerindigenous (AMR), and African (AFR) descent, which could be difficult to model in GWAS analysis. However, innovative approaches have been recently developed using local ancestry information. Here, we analyzed local ancestry-specific effects for alcohol consumption in admixed LA populations. We conducted a meta-analysis of local ancestry-aware GWAS of alcohol consumption in 11,655 individuals of LA descent. We identified associations with rs1874323 (p-value = 2.5760e-08) in the MAGI1 gene, rs6833926 (p-value = 3.0010e-08) in the ARAP2 gene, two in the SLIT3 gene (rs73805262, p-value = 9.9540e-09; rs115143510; z = p-value = 1.2250e-08), and one intergenic variant (rs3929849, p-value = 2.3930e-09) in those individuals where the section of the genome comes from AFR descent. We also identified intergenic variants in those where the region is of AMR descent (rs4130378, p-value = 9.673e-09; rs536315876 pvalue = 4.3640e-09; rs115675116, p-value = 4.3190e-09). Our study significantly contributes to the ongoing efforts to understand the ancestry-specific genetic architecture of alcohol consumption in Latin American populations. The novel genetic associations identified in highly admixed Latin American individuals highlight the importance of conducting ancestry-aware GWAS to identify potential ancestry-specific loci.