Name: Yang Xiao Email: yangxa@umich.edu PI Name: Kam Leong PI Email: kam.leong@columbia.edu ## Chronic Opioid Treatment Arrests Neurodevelopment and Alters Synaptic Activity in Human Midbrain Organoids Hye Sung Kim^{1,2,3}, Yang Xiao¹, Xuejing Chen¹, Siyu He¹, Jongwon Im¹, Moshe J. Willner¹, Michael O. Finlayson⁴, Cong Xu¹, Huixiang Zhu⁵, Se Joon Choi^{5,6}, Eugene V. Mosharov^{5,6}, Hae-Won Kim^{2,3,7}, Bin Xu⁵, and Kam W. Leong^{1,8} ¹Department of Biomedical Engineering, Columbia University; ²Institute of Tissue Regeneration Engineering (ITREN), Dankook University; ³Department of Regenerative Dental Medicine, Dankook University; ⁴JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center; ⁵Department of Psychiatry, Columbia University Medical Center; ⁶Division of Molecular Therapeutics, New York State Psychiatric Institute; ⁷Department of Nanobiomedical Science, Dankook University; ⁸Department of Systems Biology, Columbia University Irving Medical Center Understanding the impact of long-term opioid exposure on the embryonic brain is critical due to the surging number of pregnant mothers with opioid dependency. However, this has been limited by human brain inaccessibility and cross-species differences in animal models. Here, a human midbrain model is established that uses human iPSC-derived midbrain organoids to assess celltype-specific responses to opioids. This study establishes a highly scalable and sensitive framework for transcriptomic profiling of brain tissues to investigate fentanyl exposure and withdrawal. Single-cell mRNA sequencing of 25,510 cells from organoids in different treatment groups reveals that chronic fentanyl treatment arrests neuronal subtype specification during early midbrain development and alters synaptic activity and neuron projection. In contrast, acute fentanyl treatment increases dopamine release but does not significantly alter gene expression related to cell lineage development. These results provide the first examination of the effects of opioid exposure on human midbrain development at the single-cell level. (Advanced Science, 2024)