Submitter Name: Carter Allen Submitted email: allen.2554@buckeyemail.osu.edu

A statistical framework for network-based discovery of opioid use sub-populations in rats using the Bayesian stochastic block model

Carter Allen¹, Brittany N. Kuhn², Nazzareno Cannella³, Ayteria Crowe², Analyse T. Roberts², Veronica Lunerti³, Massimo Ubaldi³, Gary Hardiman⁴, Leah Solberg Woods⁵, Dongjun Chung¹, Roberto Ciccocioppo³, Peter W. Kalivas²

¹Department of Biomedical Informatics, The Ohio State University ²Department of Neuroscience, Medical University of South Carolina ³School of Pharmacy, University of Camerino ⁴School of Biological Sciences, Queen's University Belfast ⁵Department of Internal Medicine, Wake Forest University

Opioid use disorder is a psychological condition that affects over 200,000 people per year in the U.S., causing the CDC to label the crisis as a rapidly spreading public health epidemic. It has been found that the behavioral relationship between opioid exposure and development of opioid use disorder varies areatly between individuals, implying existence of sup-populations with varying degrees of opioid susceptibility. In this study, we analyzed behavioral data from over 300 rats of pre- and post-heroin experience, which were collected from two geographically distinct cohorts of adult male and female heterogeneous stock. A stress and anxiety-related behavioral baseline was established for each rat using the elevated-plus maze and open field task experiments. Then, rats were exposed to heroin selfadministration training and follow-up behavioral tests. To analyze the effect of heroin exposure on behavioral changes, we developed a network-based data analysis workflow. Specifically, we integrate different cohorts of rats, remove possible batch effects, and construct a rat-rat similarity network based on their behavioral patterns. We then implemented community detection on this similarity network using a Bayesian degree-corrected stochastic block model to uncover sub-populations of rats with differing levels of opioid susceptibility. We discovered three distinct behavioral sub-populations, each with significantly different behavioral outcomes that allowed for unique characterization of each cluster in terms of susceptibility to opioid dependence. In this presentation, we will present a generalized workflow and open source software, named behavior. Finally, we gently illustrate sub-population identification analysis using this workflow and interpretation of the results.