Predicting Substance Use Disorders: A Multifactorial Risk Index Combining Clinical, Environmental, and Genetic Risk Factors

Peter B. Barr 1,2, Morgan N. Driver 3, Sally I-Chun Kuo 4, Mallory Stephenson 5, Fazil Aliev 5,6, Richard Karlsson Linnér 7, Andrey P. Anokhin 8, Kathleen Bucholz 8, Grace Chan 9,10, Howard J. Edenberg 11,12, Alexis C. Edwards 5, Meredith W. Francis 8, K. Paige Harden 13,14, Chella Kamarajan 1, Jaakko Kaprio 15, Sivan Kinreich 1, Samuel Kuperman 10, Antti Latvala 16, Jacquelyn L. Meyers 1,2, Abraham A. Palmer 17,18, Martin H. Plawecki 19, Bernice Porjesz 1, Richard J. Rose 20, Marc A. Schuckit 17, Jessica E. Salvatore 4, and Danielle M. Dick 3,6

1 Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University; 2 VA New York Harbor Healthcare System; 3 Department of Human and Molecular Genetics, Virginia Commonwealth University; 4 Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University; 5 Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University; 6 Department of Psychology, Virginia Commonwealth University; 7 Department of Economics, Leiden University; 8 Department of Psychiatry, School of Medicine, Washington University in St. Louis; 9 Department of Psychiatry, School of Medicine, University of Connecticut; 10 Department of Psychiatry, Carver College of Medicine, University of Iowa; 11 Department of Medical and Molecular Genetics, School of Medicine, Indiana University; 12 Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University; 13 Department of Psychology, University of Texas at Austin; 14 Population Research Center, University of Texas at Austin; 15 Institute for Molecular Medicine Finland, University of Helsinki; 16 Institute of Criminology and Legal Policy, University of Helsinki; 17 Department of Psychiatry, University of California San Diego; 18 Institute for Genomic Medicine, University of California San Diego; 19 Department of Psychiatry, School of Medicine, Indiana University; 20 Department of Psychological and Brain Sciences, Indiana University

Substance use disorders (SUDs) incur serious social and personal costs. Tools that identify persons at risk before problems develop may improve prevention efforts. We tested whether models that include polygenic scores (PGS) and an index of environmental/clinical risk factors can identify individuals meeting criteria for DSM-IV: 1) alcohol dependence, 2) drug dependence, and 3) any substance dependence (alcohol, other drug, or nicotine). We used four samples: 1) the National Longitudinal Study of Adolescent to Adult Health; 2) the Avon Longitudinal Study of Parents and Children; 3) the Collaborative Study on the Genetics of Alcoholism; and 4) the Finnish Twin Cohort Study. Our exposures included a risk index composed of ten previously validated items and PGS of drinks per week, problematic alcohol use, externalizing problems, major depressive disorder, and schizophrenia. In the full models, PGS for externalizing (OR’s = 1.13 – 1.25) and the risk index (OR’s = 1.34 – 1.62) were associated with all three outcomes, PGS for problematic alcohol use was associated with alcohol dependence and any substance dependence (OR’s = 1.10 – 1.13). Those in the to the top 10% of the risk index and PGS (relative to the bottom 90%) had were at 4.00 - 9.13 times the risk for each SUD. Measures of genetic, clinical, and environmental risk demonstrate modest ability to identify those at risk for SUDs in young adulthood. Our ability to detect those at risk will improve as PGS become more powerful and we include additional risk factors.