Title: Precision Tobacco Treatment: Genetic risk scores and biomarkers

Li-Shiun Chen, M.D., M.P.H., Sc.D.1, Timothy Baker, Ph.D.2, Laura Bierut, M.D.1

1Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
2Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

Introduction: This study aims to evaluate the potential of polygenetic markers to enhance current treatment by incorporating an individual’s genetic and metabolic biomarkers.

Methods: We investigated two predictors: a) genome-wide polygenic risk scores (PRSs) for smoking phenotypes and b) nicotine metabolite ratio (NMR). We evaluated bio-verified end-of-treatment abstinence among smokers in two randomized control trials (N=1,898 including 807 in the Genetically Informed Smoking Cessation Trial (GISC) and 1,091 in the University of Wisconsin Trial).

Results: Both PRS for failed smoking cessation and PRS for delayed age of smoking initiation predict smoking abstinence in the treatment trials (meta-analysis OR=0.89, 95%CI=0.80-0.99, p=0.037; meta-analysis OR=1.2, 95%CI=1.1-1.4, p=0.00038 respectively, N=1,592 smokers of European Ancestry). Addition of genetic predictors to clinical predictors significantly increase the AUC (0.70 to 0.71, p=0.034). In addition, NMR predicts treatment response in 807 GISC participants of both European and non-European Ancestry. Specifically, slow nicotine metabolizers respond better to nicotine replacement vs. placebo (OR=4.7, 95%CI=1.7, 14.9, p=0.0040), but not varenicline vs. placebo (OR=2.5, 95%CI=0.87-8.1, p=0.11). In contrast, normal nicotine metabolizers respond to both nicotine replacement and varenicline vs. placebo (OR=2.04, 95%CI=1.12-3.8, p=0.021; OR=4.15, 95% CI=2.38-7.49, p=9.8e-7 respectively), but varenicline produces significantly higher end-of-treatment abstinence than does nicotine replacement (OR=2.0, 95%CI=1.2-3.3, p=0.0050 for varenicline vs. nicotine replacement).

Conclusion: Polygenic risk scores predict overall treatment success and NMR predicts differential treatment response. These findings strengthen the case that polygenic risk scores and a metabolism biomarker may provide complementary information that could be useful for treatment assignment and prognostic prediction.