Epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use

Fang Fang¹, Bryan Quach¹, Kaitlyn G. Lawrence², Jenny van Dongen³, Jesse A. Marks¹, Sara Lundgren⁴, Mingkuan Lin⁵, Veronika V. Odintsova³, Ricardo Costeira⁶, Zongli Xu², Linran Zhou¹, Meisha Mandal¹, Jacqueline M. Vink⁷, Laura J Bierut⁸, Miina Ollikainen⁴, Jack A. Taylor², Jordana T. Bell⁶, Jaakko Kaprio⁴, Dorret I. Boomsma³, Ke Xu^{5,9}, Dale P. Sandler², Dana B. Hancock¹, Eric O. Johnson^{1,10}

¹GenOmics, Bioinformatics, and Translational Research Center, Research Triangle Park, NC, USA. ²Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA. ³Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. ⁴Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland. ⁵Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA.
⁶Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
⁷Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands. ⁸Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, Missouri, USA.
⁹VA Connecticut Healthcare System, West Haven, CT, USA.

Cannabis use and its links to adverse health outcomes is a pressing public health question, highlighting the urgent need for reliable biomarkers that reflect cannabis exposure. Growing evidence suggests that DNA methylation can serve as a reliable exposure biomarker. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based CpG methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9,480 participants (7,739 European- and 1,741 African-ancestry) from 6 cohorts. Our EWAS metaanalysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 ($p < 5.85 \times 10^{-7}$): cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Previous EWAS findings showed tobacco smoking was a big confounding factor for cannabis use, but none of the four CpGs has been reported as genome-wide significant hits in EWAS for smoking. Although our EWAS model accounted for tobacco smoking as a covariate, we further investigated the associations between CpGs and lifetime cannabis use in the subset of participants who never smoked tobacco (N=3,861). All four top CpGs from the overall analysis remained significantly associated with cannabis use in never smokers (p < 0.05). Additionally, the EWAS meta-analysis for cannabis use in never smokers identified another epigenome-wide significant CpG, cg14237301 annotated to APOBR, which has been found significantly associated with lifetime cannabis use in a genome-wide association study ($p = 7.56 \times 10^{-9}$), suggesting the observed differential DNA methylation at APOBR was likely driven by genetic factors. These findings support developing a peripheral blood-based biomarker indicative of lifetime cannabis use.