Opiate responses are controlled by interactions of \textit{Oprm1} and \textit{Fgf12} loci in rodents; correspondence to human GWAS findings

Paige Lemen1; Yanning Zuo2; Alexander S. Hatoum3; Price E. Dickson4; Guy Mittleman5; Arpana Agrawal3; Benjamin C. Reiner6; Wade Berrettini6; David G. Ashbrook1; Mustafa Hakan Gunturkun1; Megan K. Mulligan1; Robert W. Williams1; Francesca Telese2; Hao Chen1

1University of Tennessee Health Science Center, Memphis, TN; 2University of California San Diego, CA; 3Washington University, St. Louis, MO; 4Marshall University, Huntington, WV; 5Ball State University, Muncie IN; 6University of Pennsylvania, Philadelphia, PA

We mapped high-precision time-series data (15 min bins for 3 hours) generated for \textasciitilde700 adult BXD mice across 105 morphine- and naloxone-related traits using new sequence-derived marker maps and a linear-mixed model. We confirm a previously mapped sex-independent effect of initial locomotor responses to morphine (50 mg/kg ip) that maps precisely to \textit{Oprm1} on chromosome (Chr)10, with the linkage score reaching -log-10-P of \textasciitilde12.4 (with a high B allele) at 75 min and exhausted by 160 min. We detected a new modulator of opiate locomotor activation in both sexes on Chr 16, with a compelling candidate – \textit{fibroblast growth factor 12 (Fgf12)}I. We also detected a strong, but transient epistatic interaction between these two loci. Single nuclei transcriptomic analyses in rates demonstrates that expression of \textit{Oprm1} and \textit{Fgf12} mRNA covary in one specific subtype of Drd1 medium spiny neurons. Our Bayesian network analysis identified that a cascade of MAP kinases – Mapk8ip2, Map3k11, and Map3k12 – are part of the \textit{Oprm1} -\textit{Fgf12} network. This is the first demonstration of a time-dependent epistatic interaction modulating drug response in mammals with interesting mechanistic implications. Analysis of \textit{OPRM1} and \textit{FGF12} gene networks in human GWAS data highlights enrichment of signals associated with substance use disorder.