Long-term delta-9-tetrahydrocannabinol administration promotes IncRNA **MMP25-AS1-MMP25** mRNA interactions to preserve intestinal epithelial barrier function in chronic HIV/SIV infection

Lakmini Premadasa1,2, Eunhee Lee1,2, Marina McDew-White1,2, Smita Kulkarni1, Mahesh Mohan1,2

1Texas Biomedical Research Institute / 2Southwest National Primate Research Center, San Antonio, Texas.

Background: Unresolved chronic intestinal inflammation in HIV-infected individuals on suppressive ART promotes dysbiosis and translocation of microbial products that can systemically reach the brain and induce neuroinflammation/HIV-associated neurocognitive disorders. Since long-term Δ9-tetrahydrocannabinol (Δ9-THC) administration reduced intestinal inflammation in SIV-infected rhesus macaques (RMs), we hypothesized that modulation of long non-coding RNA (lncRNA) expression represents epigenetic mechanisms underlying its intestinal epithelial protective effects.

Methods: Using microarray, we profiled lncRNA and mRNA expression in colonic epithelium (CE) of uninfected (n=6) and SIV-infected RMs administered either vehicle (VEH/SIV; n=5) or Δ9-THC (THC/SIV; n=6).

Results: Relative to controls, fewer lncRNAs were up/downregulated in CE of THC/SIV compared to VEH/SIV RMs. Interestingly, several lncRNAs associated with inflammation; MALAT 1, GATA6-AS1, GATA3-AS1, SPRY-IT1 were exclusively upregulated in CE of VEH/SIV RMs. More importantly, natural antisense lncRNA **MMP25-AS1** was significantly upregulated (FC=2.3) in the CE of THC/SIV RMs while its associated protein coding gene **MMP25** (maintains proinflammatory state in intestine, responds to translocating luminal LPS, immune activation) was significantly downregulated (FC = 2.2).

LncTAR analysis confirmed two significant homology regions and an energetically stable (nDG=0.2626) mRNA-lncRNA duplex structure between **MMP25** and **MMP25-AS1**. Immunohistochemistry confirmed significantly elevated MMP25 protein expression in CE of VEH/SIV compared to THC/SIV RMs. Overexpression and RNA pull-down experiments confirmed the ability of **MMP25-AS1** to directly bind MMP25 and significantly reduce its mRNA and protein expression.

Conclusions: Our data suggests that **MMP25-AS1** is a negative regulator of **MMP25** and low-dose THC can epigenetically suppress **MMP25** mRNA/protein expression through upregulation of its natural antisense **MMP25-AS1** expression.