Name: Katerina Zorina-Lichtenwalter Email: katerina.zorina@colorado.edu

PI Name: Naomi P. Friedman, Tor D. Wager

PI email: naomi.friedman@colorado.edu, tor.d.wager@dartmouth.edu

Common factors across chronic pain conditions in the UK Biobank

Katerina Zorina-Lichtenwalter¹, Carmen Bango², Marta Čeko³, Martin A. Lindquist⁴, Matthew C. Keller⁵, Lukas Van Oudenhove⁶, Naomi P. Friedman⁷, Tor D. Wager²

¹Institute of Cognitive Science and Institute for Behavioral Genetics, University of Colorado Boulder, USA; ²Department of Psychological and Brain Sciences, Dartmouth College, USA; ³Department of Psychology and Neuroscience and Institute of Cognitive Science, University of Colorado Boulder, USA; ⁴Department of Biostatistics, Johns Hopkins University, USA; ⁵Department of Psychology and Neuroscience and Institute for Behavioral Genetics, University of Colorado Boulder, USA; ⁶Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Belgium; ⁷Department of Psychology and Neuroscience and Institute for Behavioral Genetics, University of Colorado Boulder, USA

Chronic pain conditions show substantial genetic and phenotypic correlations. Our goal for this study is to find and characterize the shared genetic risk underlying these conditions in the UK Biobank dataset (n = 432,000). We studied 24 chronic conditions marked by persistent pain in different body sites, selected for adequate numbers of cases and heritability. We ran a genome-wide association study (GWAS) on each condition and estimated genetic correlations among them. Factor analysis using genomic structural equation modeling in GenomicSEM¹ revealed evidence for a general factor explaining most of the shared genetic variance across pain conditions and a second factor explaining additional shared variance across musculoskeletal conditions. A GWAS on the general factor revealed 33 independent single nucleotide polymorphisms (SNPs) and 25 genes reaching genomewide significance. Functional annotation showed that these genes are highly and selectively expressed in brain tissues, particularly midline prefrontal and affective/motivational regions. Significant genes were implicated in a variety of biological pathways, with the top associated gene, DCC, associated with axonogenesis. Our results suggest that a common genetic component, representing biological pathways related to brain development and affective/motivational function, may underlie etiologically and anatomically distinct pain conditions. These findings support a conceptualization of chronic pain as a systemic condition involving alteration in neural pathways.

¹Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD, Ip HF, Marioni RE, McIntosh AM, Deary IJ, Koellinger PD. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nature human behaviour. 2019 May;3(5):513-25.