Submitter Name: Renato Polimanti

Submitted email: renato.polimanti@yale.edu

PI Name: Joel Gelernter

PI email: joel.gelernter@yale.edu

Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium

Renato Polimanti¹, Raymond K. Walters², Emma C. Johnson³, Jeanette N. McClintick⁴, Amy E. Adkins⁵, Daniel E. Adkins⁶, Silviu-Alin Bacanu⁷, Laura J. Bierut³, Tim B. Bigdeli⁸, Sandra Brown⁹, Kathy Bucholz³, William E. Copeland¹⁰, E. Jane Costello¹¹, Louisa Degenhardt¹², Lindsay A Farrer¹³, Tatiana M. Foroud¹⁴, Louis Fox³, Alison M. Goate¹⁵, Richard Grucza³, Laura M. Hack¹⁶, Dana B. Hancock¹⁷, Sarah M. Hartz³, Andrew C. Heath³, John K. Hewitt¹⁸, Christian J. Hopfer¹⁹, Eric O. Johnson¹⁷, Kenneth S. Kendler²⁰, Henry R. Kranzler²¹, Ken Krauter²², Dongbing Lai¹⁴, Pamela A. F. Madden³, Nicholas G. Martin²³, Hermine H. Maes²⁰, Elliot C. Nelson³, Roseann E. Peterson²⁴, Bernice Porjesz⁸, Brien P. Riley⁷, Nancy Saccone²⁵, Michael Stallings¹⁸, Tamara Wall⁹, Bradley T. Webb⁷, Leah Wetherill, the Psychiatric Genomics Consortium Substance Use Disorders Workgroup, Howard J. Edenberg⁴, Arpana Agrawal³, Joel Gelernter¹

¹Department of Psychiatry, Yale University School of Medicine; ²Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School; ³Department of Psychiatry, Washington University School of Medicine; ⁴Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; ⁵Department of Psychology, Virginia Commonwealth University; ⁶Department of Psychiatry, University of Utah;

⁷Virginia Commonwealth University Alcohol Research Center, Virginia Institute for Psychiatric and Behavioral Genetics; ⁸Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Medical Center; ⁹Department of Psychiatry, University of California San Diego; ¹⁰Department of Psychiatry, University of Vermont Medical Center; ¹¹Department of Psychiatry and Behavioral Sciences, Duke University Medical Center; ¹²National Drug and Alcohol Research Centre, University of New South Wales; ¹³Department of Medicine (Biomedical Genetics), Boston University School of Medicine; ¹⁴Department of Medical and Molecular Genetics, Indiana University School of Medicine; ¹⁵Department of Neuroscience, Icahn School of Medicine at Mount Sinai; ¹⁶Department of Psychiatry and Behavioral Sciences, Stanford University; ¹⁷Center for Omics Discovery and Epidemiology, RTI International;

¹⁸Institute for Behavioral Genetics, University of Colorado Boulder; ¹⁹Department of Psychiatry, University of Colorado Denver; ²⁰Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University; ²¹Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine; ²²Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; ²³QIMR Berghofer Medical Research Institute; ²⁴Department of Psychiatry, Virginia Commonwealth University; ²⁵Department of Genetics, Washington University School of Medicine

To provide novel insights into the biology of opioid dependence (OD) and opioid use (i.e., exposure, OE), we completed a genome-wide analysis comparing up to 4,503 OD cases, 4,173 opioid-exposed controls, and 32,500 opioid-unexposed controls. Among the variants identified, rs9291211 was associated with OE (a comparison of exposed vs. unexposed controls; z=-5.39,

p=7.2×10-8). This variant regulates the transcriptomic profiles of SLC30A9 and BEND4 in multiple brain tissues and was previously associated with depression, alcohol consumption, and neuroticism. A phenome-wide scan of rs9291211 in the UK Biobank (N>360,000) found association of this variant with propensity to use dietary supplements (p=1.68×10-8). With respect to the same OE phenotype in the gene-based analysis, we identified SDCCAG8 (z=4.69, p=10-6), which was previously associated with educational attainment, risk-taking behaviors, and schizophrenia. In addition, rs201123820 showed a genome-wide significant difference between OD cases and unexposed controls (z=5.55, p=2.9×10-8) and a significant association with musculoskeletal disorders in the UK Biobank (p=4.88×10-7). A polygenic risk score (PRS) based on a GWAS of risk-tolerance (N=466,571) was positively associated with OD (OD cases vs. unexposed controls, p=8.1×10-5; OD cases vs. exposed controls, p=0.054) and OE (exposed controls vs. unexposed controls, p=3.6×10-5). A PRS based on a GWAS of neuroticism (N=390,278) was positively associated with OD (OD cases vs. unexposed controls, p=3.2×10-5; OD cases vs. exposed controls, p=0.002) but not with OE (p=0.671). Our analyses highlight the difference between dependence and exposure and the importance of considering the definition of controls (exposed vs. unexposed) in studies of addiction.